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From radiance to flux: angular distribution models

Sort observed radiances into
angular bins over different scene |
types; }",
: P
Integrate radiance over all 6 and

¢ to estimate the anisotropic
factor for each scene type;

Apply anisotropic factor to
observed radiance to derive TOA
flux;
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From Aqua to S-NPP

« Footprint size for S-NPP is larger Aqua S-NPP
Than Tha"‘ for Aqua. Launch May 4, 2002 | Oct. 28, 2011

* Cloud properties retrieved from Altitude | 705km | 824km
VIIRS can also be different from | Inclination | 98.14° 98.75°
those retrieved from MODIS. Period 98.4 min | 101.4 min

* How do these differences affect the S-NPP fluxes inverted
using Aqua ADMs ?
— Examine the sigmoidal fits over ocean developed using Aqua and S-NPP data
— Simulate Aqua and S-NPP observations using MODIS pixel level data

— Examine MISR anisotropy for different size of footprints
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Angular distribution model over cloudy ocean
For glint angle > 20°:

— Average instantaneous radiances into 775 intervals of In(ft);

— Apply a five-parameter sigmoidal fit to mean radiance and In(ft):
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f: cloud fraction
T: cloud optical depth
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Sigmoidal fits from Aqua and S-NPP: using 4 months of data

Liquid clouds Aqua NPP
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Liq cloud: SZA[41], VZA[3], RAZ[61] LigClouds over ocean: SZA=41, VZA=3, RAZ=61
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Ice clouds

Aqua

NPP

Sigmoidal fits from Aqua and S-NPP: using 4 months of data
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Aqua ice cloud: SZA[49], VZA[3], RAZ[65]
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Ice cloud: SZA[49], VZA[3], RAZ[65]
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NPP ice cloud: SZA[49], VZA[3], RAZ[65]
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MODIS Pixels
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Simulate Aqua and NPP footprints to
quantify flux error due to different

footprint sizes

Derive broadband radiances for
these simulated Aqua and NPP
footprints using MODIS spectral
channels:
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Convert the broadband radiances to
fluxes using Aqua ADMs and scene
identification from MODIS
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Develop narrowband-to-broadband (NB2BB) coefficients

+ Use Aqua data from July 2002 to September 2007

« Shortwave
— Use 7 MODIS spectral bands (0.47, 0.65, 0.86, 1.24, 2.13 and 3.7
Um) in the regression

— Derive monthly coefficients for discrete intervals of solar zenith
angle, viewing zenith angle, relative azimuth angle, surface type,
snow/non-snow, cloud fraction, cloud optical depth

* Longwave
— Use 5 MODIS spectral bands (6.7, 8.5, 11.0, 12.1 and 14.2 pm)

— Derive monthly coefficients for discrete intervals of viewing
zenith angle, precipitable water, surface type, snow/non-snow,

cloud fraction, cloud optical depth
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SW radiance from nb2bb agrees well with the CERES radiance

year=2004 month=04 sat=FM4

relrms mean= 2.14(%)

nb2bb—lceres ([nb2bb — Iceres)
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LW radiance from nb2bb agrees well with the CERES radiance

year=2004 month=04 sat=FM4

5.0 reldiff mean= 0.07(%)
4.5 . -

relrms mean= 1.14(%)
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SW flux inverted from NB2BB radiance for Aqua footprint

201304 /FM3:NB2BBAqua SW flux: mean SW=249.8Wm 2 Wm-2

Wm-2
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Global instantaneous monthly mean SW flux differs by 0.6 Wm-= (0.25%)

201304 /FM3 SW flux Diff:SimuNPP-NB2BBAqua ASW=-0.62Wm 2 ~81% of grid boxes with flux
differences less than 2 Wm-2
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LW flux inverted from NB2BB radiance for Aqua footprint

201304 /FM3:NB2BBAqua LW flux: mean LW=240.9Wm 2 Wm-2

Wm-2
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Global monthly mean daytime LW flux differs by 0.2 Wm-=2 (0.1%)

201304 /FM3 LW flux Diff:SimuNPP-NB2BBAqua ALW=0.22Wm 2 ~94% of grid boxes with flux
differences less than 2 Wm-2
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Global monthly mean nighttime LW flux differs by 0.2 Wm- (0.1%)

201304/FM3 LW flux Diff:SimuNPP-NB2BBAqua ALW=0.25Wm 2 ~96% of grid boxes with flux
differences less than 2 Wm-2
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Does MISR radiance anisotropy change as
footprint size changes ?

SSFM data provide radiance
anisotropy for each CERES

along-track footprint from nine
spatially matched directions SUARM
CERES footprint size changes

as viewing zenith angle changes

— At nadir: 16 by 32 km
— At 6=31°18.5 by 37 km

Examine MISR 0.56 pm
radiance anisotropy from these

{ UOKM

two different size of ~__ 7 Se—--
footprints: 18.5X37km 16 X32km

_ o equivalent to Terra/Aqua nadir
Lagua = Hbopres <20°) NPP nadir footprint size

Inpp = 1(30° < OcerEs < 35°) footprint size

09/01/2015 CERES STM 17



Radiance anisotropy from MISR for near-nadir-viewing CERES footprints

Separate the near-nadir-viewing
CERES footprints by solar
zenith angle and relative azimuth
angle

Calculate the mean radiance for
each camera angle for different
cloud types

Derive the "line-integrated” flux
and anisotropy

"FM3" Nadir FOV

Aqua

70.5
G = / I(0crrEs < 20°)sinfcosfdl
~70.5

RAqua —

WI_(QCERES < 200>
G

PCL: CF =0.1-40%

OVC: CF=99-100%

High: EP<440 hPa

Low: EP > 680 hPa

Thin: t<3.35

Thick: T> 22.63
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Derive flux from the MISR radiance measurement for
oblique-viewing CERES footprints

70.5
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Relative anisotropy and flux differences for low clouds

Relative anisotropy difference: Low clouds
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Relative anisotropy and flux differences for mid clouds

Relative anisotropy difference: Mid clouds
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Relative anisotropy and flux differences for high clouds

Relative anisotropy difference: High clouds
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Summary

Compared the radiance vs. In(ft) relationship derived using CERES-Aqua
with that derived using CERES-NPP

 Anisotropy factors over cloudy ocean can differ by up to 4% for thin partly
cloudy scenes
Generated a month of simulated NPP observations using Aqua-MODIS

« MODIS spectral radiances in the simulate NPP footprints and Aqua
footprints are converted to broadband radiances

« Fluxes are derived using these broadband radiances and Aqua ADMs
Global monthly mean instantaneous SW flux differ by 0.6 Wm-2 (0.25%)
 Global monthly mean instantaneous LW flux differ by 0.2 Wm-2 (0.1%)

MISR multi-angle measurements indicated that
The ‘line-integrated’ anisotropy can differ by up to 4% for thin partly
cloudy cases, and by less than 1% for moderate and thick overcast cases

 The overall relative flux biases are less than 0.5% for different solar
zenith angles
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